

Virtual non-calcium dual-energy CT: clinical applications

D'Angelo et al. (2021), in European Radiology Experimental

Products

Dual-energy CT (DECT) with virtual non-calcium (VNCa) imaging for bone marrow and musculoskeletal pathology.

Hospital / Authors

Tommaso D'Angelo, Moritz H. Albrecht, Danilo Caudo, Silvio Mazziotti, Thomas J. Vogl, Julian L. Wichmann, Simon Martin, Ibrahim Yel, Giorgio Ascenti, Vitali Koch, Giuseppe Cicero, Alfredo Blandino, Christian Booz.

University Hospital Messina, Italy; University Hospital Frankfurt, Germany

Clinical Background

VNCa enhances CT imaging by removing calcium to improve visualization of bone marrow changes, inflammation, trauma, and degenerative conditions. It is faster and more cost-effective than MRI.

Aim of Study

To assess VNCa's utility in identifying pathologies, including bone marrow edema (BME), subtle fractures, and infiltrative diseases.

Cohort Study

DECT scans performed on multiple anatomical regions (spine, appendicular skeleton) with VNCa imaging. Studies demonstrated 85-96% sensitivity and 82-99% specificity for BME detection compared to MRI.

Results

- VNCa imaging improves sensitivity (85-96%) and specificity (82-99%) for detecting bone marrow edema (BME), outperforming standard CT and complementing MRI.
- Enables accurate detection of subtle fractures (e.g., sacral insufficiency, ankle, scaphoid) with 15-20% better sensitivity than standard CT.
- Differentiates hemorrhage from calcifications, resolving diagnostic ambiguities in neuroimaging and emergency cases.
- Enhances visualization of degenerative disc changes and infiltrative diseases like multiple myeloma and metastases, improving diagnosis and treatment planning.

Summary

- VNCa CT is a fast, cost-effective alternative to MRI for trauma, inflammatory, and oncologic cases, especially in emergency settings.
- Provides precise imaging for BME, subtle fractures, and degenerative pathologies, reducing reliance on expensive modalities.
- Supports vascular stenosis
 assessment by removing calcified
 plaques, improving accuracy in
 angiography studies.
- Enables early diagnosis and targeted interventions across diverse clinical conditions, emphasizing its utility in routine and critical care.