

Validation of standing cone beam computed tomography for diagnosing subchondral fetlock pathology in the Thoroughbred racehorse

Curtiss et al. (2020), in Equine Veterinary Journal

Products

Computed Tomography (CT) for subchondral fetlock pathology diagnosis.

Hospital / Authors

Alexandra L. Curtiss, Kyla F. Ortved, Barbara Dallap-Schaer, Sergei Gouzeev, Darko Stefanovski, Dean W. Richardson, Kathryn B. Wulster

Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA

Clinical Background

Subchondral bone pathology is a major cause of lameness and poor performance in Thoroughbred racehorses. Early detection is crucial to prevent progression to fractures and osteoarthritis. CBCT offers a standing diagnostic alternative to fan beam CT (FBCT), eliminating the need for general anesthesia.

Aim of Study

To assess the accuracy and reliability of CBCT in diagnosing fetlock subchondral pathology, comparing it to FBCT and evaluating interobserver agreement.

Cohort Study

25 Thorough bred fetlocks underwent CBCT and FBCT imaging, analyzed by an imaging specialist and a surgeon. Interobserver and intermodality agreement were statistically evaluated.

Results

- **CBCT** and FBCT showed strong correlation in identifying **subchondral lesions**, with significant interobserver agreement.
- **CBCT detected lesions** missed by radiographs, improving early diagnosis of **bone pathology**.
- Standing **CBCT provided detailed imaging** without the need for general anesthesia.
- Some small lesion discrepancies were noted, indicating areas for further training and refinement.
- Findings support CBCT as a reliable tool for diagnosing fetlock pathology in Thoroughbred racehorses.

Summary

- CBCT effectively identified fetlock pathology, showing strong agreement with FBCT.
- Early detection and diagnosis can improve intervention strategies and reduce injury risk.
- **Standing CBCT** offers a safer alternative to FBCT, eliminating anesthesia-related complications.
- Further validation and training for interpretation will enhance clinical applications.
- Findings support CBCT's role in equine diagnostics, helping prevent severe injuries.

Link to paper