

Longitudinal tendon healing assessed with multi-modality advanced imaging and tissue analysis

Johnson et al. (2024), in *Animals*

Products

Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Ultrasonography (US) for longitudinal assessment of superficial digital flexor tendon (SDFT) healing.

Hospital / Authors

Sherry A. Johnson, Alejandro Valdés-Martínez, Philip J. Turk, Cyril Wayne McIlwraith, Myra F. Barrett, Kirk C. McGilvray, David D. Frisbie Colorado State University, Orthopaedic Research Center, Veterinary Imaging Consultants, Atrium Health.

Clinical Background

SDFT injuries present challenges due to high re-injury rates and biomechanical deficits. Multi-modality imaging provides advanced diagnostic capabilities, aiding in rehabilitation and performance optimization.

Aim of Study

To compare CT, MRI, and US in assessing tendon healing, correlating imaging findings with histologic, biochemical, and biomechanical parameters using an equine surgical model.

Cohort Study

Surgically induced tendon lesions in eight horses, imaged using CT, MRI, and US over 12 months. Imaging findings correlated with histologic and biomechanical data to evaluate tissue changes during healing.

Results

- CT imaging identified the largest lesions and precisely detected scar tissue changes, with isoattenuation correlating to aggrecan deposition, indicating suboptimal healing.
- MRI T2-weighted hyperintensity revealed hypercellular remodeling even in chronic stages, while PD-FS hyperintensity indicated reduced cellular density and chronic tissue changes.
- US consistently underestimated lesion size, highlighting its limitations compared to CT and MRI in advanced tendon imaging.
- Lesion size decreased over time across all modalities, with CT showing the largest lesion-to-tendon ratios, followed by MRI and US.

Summary

- CT imaging provided the most precise assessment of tendon lesion size and healing dynamics, identifying scar tissue formation through isoattenuation.
- MRI sequences revealed chronic tissue remodeling, offering valuable insights into cellular-level changes during healing.
- US, while practical and accessible, should be interpreted cautiously due to its underestimation of lesion size.
- Advanced imaging modalities are critical for refining diagnostic accuracy and rehabilitation strategies, ensuring optimal outcomes for equine athletes.